Cloning and Expression of SARS-CoV-2 Membrane Recombinant Protein in Prokaryotic Expression System

Silvia Tri Widyaningtyas (1) , Fera Ibrahim (2) , Ekawati Betty Pratiwi (3) , Tanaya Subiantistha (4)
(1) Research Center for Virology and Cancer Pathobiology, Faculty of Medicine, Universitas Indonesia , Indonesia
(2) Department of Microbiology, Faculty of Medicine, Universitas Indonesia , Indonesia
(3) Research Center for Virology and Cancer Pathobiology, Faculty of Medicine, Universitas Indonesia , Indonesia
(4) Research Center for Virology and Cancer Pathobiology, Faculty of Medicine, Universitas Indonesia , Indonesia

Abstract

Background: The M protein is one of the structural protein of SARS CoV-2. The M protein is relatively conserved and stable than other structural protein. This made immunodominant epitopes of M protein has the advantage to be learned with the aim to understanding its immunogenicity and its antigenicity. Several studies have shown that M protein successfully expressed in several expression system, E. coli was one of them. In this study, M gene of SARS CoV-2 was cloned, sequenced, expressed in E. coli BL21 (DE3) system, and purified with denature condition. The membrane recombinant protein can be used for development of a SARS CoV-2 antibody diagnostic system.
Methods: the gene encoding the SARS-CoV-2 M protein in the form of gBlocks was cloned into the cloning vector and then subcloned into the pQE80L prokaryotic expression vector. There were three stages of recombinant plasmids verification which were the colony PCR, restriction, and sequencing. The M gene cloned in pQE80L was expressed by using BL21 and purified under denature condition.
Results: The recombinant plasmid pQE80L was confirmed containing M protein using primer that specifically amplify the multiple cloning sites (MCS) of pQE80L and produce 595 bp amplicon that indicating the presence of recombinant gene. Restriction of recombinant plasmid using BamHI and HindIII produced 306 bp and 4709 bp DNA bands. The sequence of M gene in pEQ80L has been confirmed by sequencing. Further to ensure the M gene could be expressed in prokaryotic system, the recombinant plasmid was transformed into BL21 bacteria. The SARS-CoV-2 membrane protein with a size of 11,83 kDa has been successfully expressed and purified using the Ni-NTA agarose purification technique under denature conditions.
Conclusion: the gene encoding the membrane protein of SARS-CoV-2 has been successfully cloned and expressed in the prokaryotic expression system.


Abstrak
Latar belakang: Protein M merupakan salah satu protein struktural SARS-CoV-2. Protein M merupakan protein yang relatif lestari dan tidak mudah untuk bermutasi dibandingkan protein struktural lainnya. Hal ini menjadikan protein M memiliki kelebihan untuk dipelajari epitop imunodominannya, dengan tujuan untuk memfasilitasi pemahaman terkait imunogenisitas dan antigenisitasnya. Beberapa penelitian menunjukkan ekspresi protein M telah dilakukan pada beberapa sistem ekspresi, salah satunya pada sistem ekspresi E. coli. Pada penelitian ini dilakukan pengklonaan gen M SARS CoV-2, sekuensing, ekspresi pada E. coli BL21(DE3), dan purifikasi dengan kondisi denatur. Protein rekombinan membran ini kemudian dapat digunakan dalam pengembangan sistem diagnostik antibodi SARS CoV-2.
Metode: gen penyandi protein M SARS-CoV-2 dalam bentuk gBlocks diklona ke dalam vector pengklonaan dan kemudian disubklona ke dalam vector ekspresi prokariot pQE80L. Tiga tahapan verifikasi terhadap plasmid rekombinan, yaitu PCR koloni, restriksi, dan sekuensing dilakukan untuk memastikan bahwa gen target telah berhasil diklona. Plasmid ekspresi pQE80L yang membawa gen M kemudian diekspresikan dan dipurifikasi pada kondisi denatur. 
Hasil: Plasmid rekombinan pQE80L dikonfirmasi mengandung protein M menggunakan primer yang secara spesifik mengamplifikasi multiple cloning site (MCS) pQE80L dan menghasilkan amplicon berukuran 595 bp yang menunjukkan keberadaan gen rekombinan. Restriksi plasmid rekombinan menggunakan BamHI dan HindIII menghasilkan pita DNA berukuran 306 bp dan 4709 bp. Sekuen gen
M di pQE80L dikonfirmasi dengan sekuensing. Untuk memastikan bahwa gen M dapat diekspresikan di sistem prokariot, plasmid rekombinan ditransformasi ke dalam bakteri BL21. Protein membran SARSCoV-2 dengan ukuran 11,83 kDa telah berhasil diekspresikan dan dipurifikasi menggunakan teknik purifikasi Ni-NTA agarose pada kondisi denature.
Kesimpulan: gen penyandi protein membrane SARS-CoV-2 telah berhasil diklona dan diekspresikan pada sistem ekspresi prokariot

Full text article

Generated from XML file

References

Qun Li, Xuhua Guan, Peng Wu, Xiaoye Wang, Lei Zhou, Yeqing Tong, et al. Early transmission dynamics in Wuhan, China, of novel coronavirusinfected pneumonia. N Engl J Med. 2020 Mar 26;382(13): 1199–1207. Available from: doi: 10.1056/NEJMoa2001316

Thiago Carvalho, Florian Krammer and Akiko Iwasaki. The first 12 months of Covid-19: a timeline of immunological insights. Nature Reviews Immunology. 2021 April; 21: 245–256. Available from: https://doi.org/10.1038/s41577-021-00522-1

Jun Wu, Xiaohui Yuan, Bing Wang, Rui Gu, Wei Li, et al. Severe acute respiratory syndrome coronavirus 2: From gene structure to pathogenic mechanisms and potential therapy. Front Microbiol. 2020; 11: 1576. Available from: doi: 10.3389/fmicb.2020.01576

Rozhgar A. Khailany, Muhamad Safdar, & Mehmet Ozaslan. Genomic characterization of novel SARSCoV-2. Gene Rep. 2020 Jun; 19: 100682. Available from: doi: 10.1016/j.genrep.2020.100682

Rui Liu, Huan Han, Fang Liu, Zhihua Lv, Kailang Wu, et al. Positive rate of RT-PCR detection of SARSCoV-2 infection in 4880 cases from one hospital in Wuha, China, from Jan to Feb 2020. Clin Chim Acta. 2020 Jun; 505: 172–175. Available from: doi:10.1016/j.cca.2020.03.009

Bhavesh D. Kevadiya, Jatin Machhi, Jonathan Herskovitz, Maxim D., et al. Diagnostics for SARSCoV-2 infections. Nat Mater. 2021 May; 20(5):593–605. Available from: doi: 10.1038/s41563-020-00906-z

Lishuang Shen, Jennifer Dien Bard, Timothy J. Triche, Alexander R. Judkins, Jaclyn A. Biegel & Xiaowu Gai. Emerging variants of concern in SARS-CoV-2 membrane protein: a highly conserved target with potential pathological and therapeutic implications, Emerging Microbes & Infections, May 2021 10(1): 885-893. Available from: doi:10.1080/22221751.2021.1922097

Zhang, Z., Nomura, N., Muramoto, Y. et al. Structure of SARS-CoV-2 membrane protein essential for virus assembly. Nat Commun 202213, 4399. Available from: https://doi.org/10.1038/s41467-022-32019-3.

He Y, Zhou Y, Siddiqui P, Niu J, Jiang S. Identification of immunodominant epitopes on the membrane protein of the severe acute respiratory syndrome-associated coronavirus. J Clin Microbiol. 2005 Aug;43(8):3718-26. Available from : doi: 10.1128/JCM.43.8.3718-

2005. PMID: 16081901; PMCID: PMC1234014.

Fu, H., Liang, Y., Zhong, X. et al. Codon optimization with deep learning to enhance protein expression. Sci Rep 2020; 10: 17617. https://doi.org/10.1038/s41598-020-74091-z

Wang Y, Mao Y, Xu X, Tao S, Chen H. Codon Usage in Signal Sequences Affects Protein Expression and Secretion Using Baculovirus/Insect Cell Expression System. PLOS ONE 2015, 10(12): e0145887. https://doi.org/10.1371/journal.pone.0145887

Sambrook, J., Fritsch, E. R., & Maniatis, T. Molecular Cloning: A Laboratory Manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 1989: 1546 pp.

Lu ZJ, Gloor JW, Mathews DH. Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA. 2009 Oct;15(10):1805-13. doi: 10.1261/rna.1643609. Epub 2009 Aug 24. PMID: 19703939; PMCID: PMC2743040.

Lei Hou, Xiuying Zhang, Yang Li, Shuai Chen, Hongyi Qu, Jiazhi Yu, et al. Rapid Screening of Recombinant Plasmids by Direct Colony Quantitative Real-Time PCR. Advances in Bioscience and Biotechnology. October 2016; 7(6): 428-433. Available from: DOI:10.4236/abb.2016.710041

Lai D, Proctor JR and Meyer IM. On the importance of cotranscriptional RNA structure formation RNA 2013 19: 1461-1473

Mathews D.H., How to Benchmark RNA Secondary Structure Prediction Accuracy. Methods. 2019 Jun 1;162-163:60-67. doi: 10.1016/j.ymeth.2019.04.003

Sterk M, Romilly C, and Wagner E G H. Unstructured 5′-tails act through ribosome standby to override inhibitory structure at ribosome binding sites. Nucleic Acids Res. 2018 May 4; 46(8): 4188–4199. doi: 10.1093/nar/gky073

Wagner, E.J., Burch, B.D., Godfrey, A.C., Salzler, H.R., Duronio, R.J., Marzluff, W.F. A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone premRNA processing. Mol Cell. 2007 Nov 30;28(4):692-9.

Nouredine Behloul, Wenjuan Wei, Sarra Baha, Zhenzhen Liu, Jiyue Wen & Jihong Meng. Effects of mRNA secondary structure on the expression of HEV ORF2 proteins in Escherichia coli. Microb Cell Fact. 2017; 16: 200. Available from : 10.1186/s12934-017-0812-8

Martha P. Wulanjati, Lucia D. Witasari, Nastiti Wijayanti & Aris Haryanto. Recombinant fusion protein expression of Indonesian isolate Newcastle disease virus in Escherichia coli BL21(DE3). June 2021. Biodiversitas 22(6): 3249-3255. Available from: DOI: 10.13057/biodiv/d220629

Arun K. Upadhyay, Anupam Singh, K. J. Mukherjee & Amulya K. Panda. Refolding and purification of recombinant L-asparaginase from inclusion bodies of E. coli into active tetrameric protein. Front. Microbiol., 15 September 2014 Sec. Microbial Physiology and

Metabolism. Available from : https://doi.org/10.3389/fmicb.2014.00486

Authors

Silvia Tri Widyaningtyas
Fera Ibrahim
fera0703@gmail.com (Primary Contact)
Ekawati Betty Pratiwi
Tanaya Subiantistha
Widyaningtyas, S. T., Ibrahim, F., Pratiwi, E. B., & Subiantistha, T. (2023). Cloning and Expression of SARS-CoV-2 Membrane Recombinant Protein in Prokaryotic Expression System. Health Science Journal of Indonesia, 14(1). https://doi.org/10.22435/hsji.v14i1.6492

Article Details

Construction of Recombinant Plasmids Encoding the sACE2-Fc Gene for the Development of SARS-CoV-2 Neutralization Test

Fera Ibrahim, Silvia Tri Widyaningtyas, Devia Puspita Natalicka, Ekawati Betty Pratiwi
Abstract View : 237
Download :124