Construction of Recombinant Plasmids Encoding the sACE2-Fc Gene for the Development of SARS-CoV-2 Neutralization Test

Fera Ibrahim (1) , Silvia Tri Widyaningtyas (2) , Devia Puspita Natalicka (3) , Ekawati Betty Pratiwi (4)
(1) 1Departemen of Microbiology, Faculty of Medicine, Universitas Indonesia, Jl Pegangsaan Timur 16, Cikini, Jakarta Pusat, DKI Jakarta, 10320 , Indonesia
(2) Research Center of Virology and Cancer Pathobiology (PRVKP), Faculty of Medicine, Universitas Indonesia, Jl Kenari, Salemba Raya, Jakarta Pusat, DKI Jakarta, 10430 , Indonesia
(3) Research Center of Virology and Cancer Pathobiology (PRVKP), Faculty of Medicine, Universitas Indonesia, Jl Kenari, Salemba Raya, Jakarta Pusat, DKI Jakarta, 10430 , Indonesia
(4) Research Center of Virology and Cancer Pathobiology (PRVKP), Faculty of Medicine, Universitas Indonesia, Jl Kenari, Salemba Raya, Jakarta Pusat, DKI Jakarta, 10430 , Indonesia

Abstract

Abstract


Background: COVID-19 infection is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The presence of neutralizing antibodies in the body of an infected person is necessary to prevent viral infection. The presence of neutralizing antibodies in seroconvalesen or post vaccinated sera can be measured by several techniques. Competitive Elisa using recombinant RBD spike antigens and ACE2 receptors is one of techniques that viable to be developed since this technique can be applied in facility that does not have a BSL 2 facility. In  this research was aimed at obtaining a recombinant plasmid that could be used for the production of the soluble ACE2 recombinant (sACE2). To enhanced its activity, the sACE2 was fused to the C-terminal portion of Imunoglobin F (Fc region).


Methods: The sACE2 coding gene was inserted within the NheI and BamHI sites replacing sRBD gene in the pcDNA3-SARS-CoV-2-S-RBD-Fc vector. The presence of sACE2 gene was confirmed using restriction enzyme analysis and sequencing.


Results: The result showed that the recombinant pcDNA3-sACE2(WT)-Fc plasmid was successfully verified using restriction enzymes and sequencing so that it can be used for the production of recombinant soluble ACE2 using mammalian cells.


Conclusions: The construction process of sACE2 into the pcDNA3 SARS-CoV-2-S-RBD-Fc was successfully carried out and verified.


Keywords : SARS-CoV-2, sACE2-Fc, Recombinant DNA


 


Abstrak


 Latar Belakang: Infeksi COVID-19 disebabkan oleh Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Keberadaan antibodi netralisasi dalam tubuh seseorang yang terinfeksi sangat diperlukan untuk mencegah infeksi virus. Antibodi netralisasi dalam serum konvalesen atau serum paska vaksinasi dapat dideteksi dengan beberapa teknik. Elisa kompetitif menggunakan antigen rekombinan RBD spike dan reseptor ACE2 merupakan salah satu teknik yang layak untuk dikembangkan karena teknik ini dapat diterapkan pada fasilitas yang tidak memiliki fasilitas BSL 2. Pada penelitian ini bertujuan untuk mendapatkan plasmid rekombinan yang dapat digunakan untuk produksi rekombinan soluble ACE2 (sACE2). Untuk meningkatkan aktivitasnya, sACE2 digabungkan ke bagian C- terminal dari Imunoglobulin F (Fc region).


Metode: Gen pengkode sACE2 dimasukkan ke dalam situs NheI dan BamHI menggantikan gen S-RBD dalam vektor pcDNA3-SARS-CoV-2-S-RBD-Fc. Keberadaan gen sACE2 dikonfirmasi menggunakan analisis restriksi enzim dan sekuensing.


Hasil: Hasil penelitian menunjukkan bahwa plasmid rekombinan pcDNA3-sACE2(WT)-Fc berhasil diverifikasi menggunakan enzim restriksi dan sekuensing sehingga dapat digunakan untuk produksi rekombinan soluble ACE2 menggunakan sel mamalia.


Kesimpulan: Proses konstruksi sACE2 kedalam plasmid pcDNA3-SARS-CoV-2-S-RBD-Fc telah berhasil dilakukan dan diverifikasi.


Kata kunci : SARS-CoV-2, sACE2-Fc, DNA rekombinan

Full text article

Generated from XML file

References

Tsai TI, Khalili JS, Gilchrist M, Waight AB, Cohen D, Zhuo S, et al. ACE2-Fc fusion protein overcomes viral escape by potently neutralizing SARS-CoV-2 variants of concern. Antiviral Research. 2022;199. Doi: org/10.1016/j.antiviral.2022.10527.

Lino, A, Cardoso, MA, Gonçalves, HMR, Martins-Lopes, P. SARS-CoV-2 Detection Methods. Chemosensors. 2022;10(6):221. Doi:org/10.3390/chemosensors10060221.

Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa, N, et al. Diagnostics for SARS-CoV-2 infections. Nature Materials. 2021;20:593–605. Doi: org/10.1038/s41563-020-00906-z.

Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends in Immunology. 2020; 41(5): 355-359. Doi: 10.1016/j.it.2020.03.007.

Iwanaga N, Cooper L, Rong L, Beddingfield B, Crabtree J, Tripp RA, et al. Novel ACE2-IgG1 fusions with improved in vitro and in vivo activity against SARS-CoV-2. bioRxiv. 2020;2. Doi: 10.1101/2020.06.15.152157.

Byrnes JR, Zhou XX, Lui I, Elledge SK, Glasgow JE, Lim SA, et al. Competitive SARS-CoV-2 serology reveals most antibodies targeting the spike receptor-binding domain compete for ACE2 binding. mSphere. 2020;5(5):e00802-20. Doi: 10.1128/mSphere.00802-20.

Tan CW, Chia WN, Qin X, Liu P, Chen MI, Tiu C, et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat Biotechnol. 2020;38(9): 1073-1078. Doi: 10.1038/s41587-020-0631-z.

Xiao T, Lu J, Zhang J, Johnson RI, McKay LG, Storm N, et al. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Nature structural & molecular biology. 2021;28:202-209. Doi.org/10.1038/s41594-020-00549-3.

Byrnes JR, Zhou XX, Lui I, Elledge SK, Glasgow JE, Lim SA, et al. A SARS-CoV-2 serological assay to determine the presence of blocking antibodies that compete for human ACE2 binding. medRxiv. 2020. Doi: 10.1101/2020.05.27.20114652.

Procko E, Chan, et al. pcDNA3-sACE2(WT). ADDGENE. https://www.addgene.org/145147/

Khan KH. Gene expression in mammalian cells and its applications. Advanced pharmaceutical bulletin. 2013; 3(2): 257-263. Doi: http://dx.doi.org/10.5681/apb.2013.042.

Makrides SC. Vectors for gene expression in mammalian cells. New comprehensive biochemistry. 2003; 38: 9-26. Doi: 10.1016/S0167-7306(03)38002-0.

Brown T. Gene cloning & DNA analysis an introduction. 6th ed. (Brown T, ed.). Oxford: Wiley-Blacwell; 2010.

Sambrook J, Russel DW. Molecular cloning: a laboratory manual. 1st-3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001.

Mumm C, Drexel ML, McDonald TL, Diehl AG, Switzenberg JA, Boyle AP. OnRamp: rapid nanopore plasmid validation. BioRxiv. 2022. Doi: https://doi.org/10.1101/2022.03.15.484480.

Authors

Fera Ibrahim
fera0703@gmail.com (Primary Contact)
Silvia Tri Widyaningtyas
Devia Puspita Natalicka
Ekawati Betty Pratiwi
Ibrahim, F., Widyaningtyas, S. T., Natalicka, D. P., & Pratiwi, E. B. (2022). Construction of Recombinant Plasmids Encoding the sACE2-Fc Gene for the Development of SARS-CoV-2 Neutralization Test. Health Science Journal of Indonesia, 13(2), 63–70. https://doi.org/10.22435/hsji.v13i2.6491

Article Details

Cloning and Expression of SARS-CoV-2 Membrane Recombinant Protein in Prokaryotic Expression System

Silvia Tri Widyaningtyas, Fera Ibrahim, Ekawati Betty Pratiwi, Tanaya Subiantistha
Abstract View : 296
Download :159