The correlation of structural and binding affinity of insulin analog to the onset of action for diabetic therapy
Abstract
Background: These days, insulin analog production has been improved and becoming popular. The advantages of insulin analog have been extensively reviewed in terms of effectiveness compared to human insulin. Each of the insulin analog industries has claimed their safety and efficacy based on in vivo and in vitro to overcome type 2 diabetes. Hereby, we report on the identification of highly effective analog-based insulin on structure and binding affinity computationally, to confirm its potential and give a broader point of view to insulin analog users.
Methods: Five types of insulin analogs, Aspart, Glargine, Detemir, Lispro and Degludec, were analyzed. We grouped and clustered the sequence by alignment to identify the closeness and sequence similarity between samples, continued by superimposing analysis and undertaking binding affinity identification utilizing of a docking analysis approach.
Results: Lispro had the least sequence similarity to other types, close to Aspart (96%) and Glargine (90.5%), while Detemir and Degludec showed 100% similarity we decide to only use Degludec for the next analysis. Furthermore, Lispro, Aspart, and Glargine exhibited structural similarity strengthened by the lack of significant difference in the RMSD data. Importantly, Aspart had the highest binding affinity score (-66.1 +/- 7.1 Kcal/mol) in the docking analysis to the insulin receptor (INSR) and similar binding site areas to human insulin.
Conclusion: Our finding revealed that the strength of insulin analogs towards insulin receptors is identic with its rapid mechanism in the human body.
Keywords: computation, docking, insulin analog, sequence similarity, structure
Abstrak
Latar belakang: Saat ini, produksi analog insulin meningkat dan menjadi popular. Keuntungan analog insulin telah ditinjau secara ekstensif dalam hal efektivitas dibandingkan dengan insulin manusia. Masing-masing industri analog insulin mengklaim keamanan dan kemanjurannya berdasarkan in vivo dan in vitro untuk mengatasi diabetes tipe 2. Kami melaporkan identifikasi insulin analog yang efektif berdasarkan struktur dan afinitas pengikatan secara komputasi, untuk mengonfirmasi potensi serta memberikan sudut pandang yang lebih luas kepada pengguna insulin analog.
Metode: Lima jenis analog insulin, Aspart, Glargine, Detemir, Lispro, dan Degludec, dianalisis. Kami membandingkan dan mengelompokkan urutan tersebut dengan penyelarasan untuk mengidentifikasi kedekatan dan kesamaan urutan antar sampel dilanjutkan dengan superimposing analysis dan melakukan identifikasi binding affinity menggunakan pendekatan analisis docking.
Hasil: Lispro memiliki kemiripan sekuen paling rendah dengan jenis lainnya, mendekati Aspart (96%) dan glargine (90,5%), sedangkan Determir dan Degludec menunjukkan kemiripan 100% sehingga kami menggunakan Degludec untuk analisis selanjutnya. Selain itu, Lispro, Aspart, dan Glargine menunjukkan kesamaan struktural yang diperkuat oleh rendahnya nilai signifikansi pada data RMSD. Perlu digarisbawahi bahwa Aspart memiliki skor afinitas pengikatan tertinggi (-66.1 +/- 7.1 kkal / mol) dalam analisis docking ke reseptor insulin (INSR) dan memiliki area pengikatan yang serupa dengan insulin manusia.
Kesimpulan: Penemuan kami mengungkapkan bahwa kekuatan insulin analog sejalan dengan laju mekanismenya di dalam tubuh manusia
Kata kunci: komputasi, docking, insulin analog, kemiripan sekuen, struktur
Full text article
References
Quianzon, Celeste C, Cheikh I. The history of insulin. Diabetes. 1962;11(6):495-503.
Tibaldi JM. Evolution of insulin: from human to analog. Am J Med. 2014;127(10):S25-S38.
Bliss M. The history of insulin. Diabetes Care. 1993;16(3 SUPPL. 3):4-7.
Rosenfeld L. Insulin: discovery and controversy. Clin Chem. 2002;48(12):2270-88.
Chouhan R, Goswami S, Bajpai AK. Recent advancements in oral delivery of insulin: From challenges to solutions. In: Nanostructures for Oral Medicine. Elsevier Inc.; 2017:409-33.
Steele C, Steel D, Waine C. Type 1 diabetes mellitus. In: Steele C, Steel D, Waine C, editors. Diabetes and the Eye. Butterworth-Heinemann: Elsevier; 2008.p. 17-34.
Evans M, Schumm-Draeger PM, Vora J, King AB. A review of modern insulin analog pharmacokinetic
and pharmacodynamic profiles in type 2 diabetes: Improvements and limitations. Diabetes, Obes Metab. 2011;13(8):677-84.
Humalog [Internet]. Silver Spring, Maryland: U.S. Food and Drug Administration [cited 2021 January 11]. Available from: http://www. accessdata.fda.gov/scripts/cder/drugsatfda/index. cfm fuseaction=Search.DrugDetails
Novolog [Internet]. Silver Spring, Maryland: US Food and Drug Administration [cited 2021 January 11]. Available from: http://www. accessdata.fda.gov/scripts/cder/drugsatfda/index. cfm fuseaction=Search.DrugDetails
Apidra [Internet]. Silver Spring, Maryland: US Food and Drug Administration [cited 2021 January 11]. Available from: http://www. accessdata.fda.gov/scripts/cder/drugsatfda/index. cfm?fuseaction=Search.DrugDetails
Lantus [Internet]. Silver Spring, Maryland: US Food and Drug Administration [cited 2021 January 11]. Available from: http://www. accessdata.fda.gov/scripts/cder/drugsatfda/index. cfm?fuseaction=Search.DrugDetails
Levemir [Internet]. Silver Spring, Maryland: US Food and Drug Administration [cited 2021 January 11]. Available from: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfmfuseaction=Search.DrugDetails
Hirsch IB. Insulin Analogues. N Engl J Med. 2005;352(2):174-83.
Grunberger G. Insulin analogs are they worth it. Diabetes Care. 2014;37(6):1767-70.
Jing L, Nazleen FK, Thomas M, et al. Implementation of a health plan program switching from analogue to human insulin and glycemic control among medicare beneficiaries with type 2 diabetes. JAMA. 2019;321(4):374-84.
Davidson MB. The case for using human insulin. Am J Med. 2020;133(2):e23-e24.
Association AD. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2019. Diabetes Care. 2019;42(Supplement1):S90-S102.
Crowley MJ, Matthew LM. Revisiting NPH insulin for type 2 diabetes: is a step back the path forward? JAMA. 2018;320(1):38-9.
Lipska KJ, Irl BH, Matthew CR. Human insulin for type 2 diabetes: an effective, less-expensive Option. JAMA. 2017;318(1):23-4.
Lipska KJ. Insulin analogues for type 2 diabetes. JAMA. 2019;321(4):350-1.
Yang J, Zhang Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res. 2015;43(W1):W174-W181. doi:10.1093/nar/gkv342
Hall T, Biosciences I, Carlsbad C. BioEdit: An important software for molecular biology. GERF Bull Biosci. 2011;2(June):60-61.
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512-26.
Maiti R, Van Domselaar GH, Zhang H, Wishart DS. SuperPose: A simple server for sophisticated structural superposition. Nucleic Acids Res. 2004;32(WEB SERVER ISS.):590-4.
Yuan, S, Chan HCS, Hu Zhenquan. Using PyMOL as a platform for computational drug design. WIREs Comput Mol Sci 2017; 7:e1298
Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. JAm Chem Soc. 2003;125(7):1731-7.
Whittaker J, Whittaker L. Characterization of the functional insulin binding epitopes of the full-length insulin receptor. J Biol Chem. 2005;280(22):20932-20936.
Gilli P, Pretto L, Bertolasi V, Gilli G. Predicting hydrogen-bond strengths from acid-base molecular properties. the pka slide rule: toward the solution of a long-lasting problem. Acc Chem Res. 2009;42(1):33-44.
Wahren J, Ekberg K, Johansson J, et al. Role of C-peptide in human physiology. Am J Physiol - Endocrinol Metab. 2000;278(5):E759-68.
Wang S, Wei W, Zheng Y, et al. The role of insulin c-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions. PLoS One. 2012;7(12).
Ido Y, Vindigni A, Chang K, et al. Prevention of vascular and neural dysfunction in diabetic rats by C- peptide. Science. 1997;277(5325):563-6.
Johansson J, Ekberg K, Shafqat J, et al. Molecular effects of proinsulin C-peptide. Biochem Biophys Res Commun. 2002;295(5):1035-40.
Shafqat J, Juntti-Berggren L, Zhong Z, et al. Proinsulin C-peptide and its analogues induce intracellular Ca2+ increases in human renal tubular cells. Cell Mol Life Sci. 2002;59(7):1185-9.
Munte CE, Vilela L, Kalbitzer HR, Garratt RC. Solution structure of human proinsulin C-peptide. FEBS J. 2005;272(16):4284-93.
Kufareva I, Abagyan R. Methods of protein structure comparison. Methods Mol Biol. 2012;857:231-57.
Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161:269-88.
Luzio S, Peter R, Dunseath GJ, Mustafa L, Owens DR. A comparison of preprandial insulin glulisine versus insulin lispro in people with Type 2 diabetes over a 12-h period. Diabetes Res Clin Pract. 2008;79(2):269-75.
Carlos Antonio Negrato, Renan Magalhães Montenegro Junior, Lilia Maria Von Kostrisch, Maria Fatima Guedes, Rosiane Mattar MBG. Insulin analogues in the treatment of diabetes in pregnancy. Obstet Gynecol Clin North Am. 2007;34(2):275-91.
Setter SM, Corbett CF, Campbell RK, White JR. Insulin aspart: a new rapid-acting insulin analog. Ann Pharmacother. 2000;34(12):1423-31.
Hilgenfeld R, Seipke G, Berchtold H, Owens DR. The evolution of insulin glargine and its continuing contribution to diabetes care. Drugs. 2014;74(8):911-27.